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Foreword

This document records three working studies from an ongoing
investigation of models and methods for the prediction of the cumulative
effect of weapons salvos. The papers are reproduced in their entirety. It is the
second such document, its predecessor being Naval Postgraduate School
Technical Report NPS55-90-06, Studies on damage aggregation for weapons
salvos, July 1990, which recorded three earlier working papers.

The first paper in this sequence, Proportional damage aggregation for a
cellular target with cells of zero value, describes an important member of an
emerging family of target configuration and weapons impact scenarios
leading to the proportional damage aggregation mechanism which figures
strongly in the first three studies.

The second paper, A basic lemma on expected damage aggregation for
cellular targets and some of its applications, describes a more abstract
approach to expected damage aggregation for cellular targets. This approach is
used to demonstrate proportional damage aggregation for an extended class of
targeting scenarios which includes the cases previously considered.

The third paper, Comparisons of an empirical rule for expected damage
aggregation from weapons salvos to models assuming a proportional damage
aggregation mechanism and dependent weapons hit distributions, returns to
a methodological issue considered in the first working paper in the earlier
sequence. Its conclusion is that the empirical rule gives optimistic results in a
more general setting than previously shown.

Each working paper was intended to be reasonably self contained. As a
result there is some repetition of fundamental material within the sequence.
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Proportional damage aggregation for a cellular target with
cells of zero value

1. Introduction

This working paper follows three previous working papers "A
comparison of an empirical rule for aggregating damage from a weapons
salvo to a plausible model for the same purpose" [1], "Damage aggregation for
a weapons salvo by an empirical rule related to the Poisson approximation to
the binomial" [2], and "A stochastic model for hit overlap in a weapons salvo
directed against an area target that leads to a proportional mechanism for
damage aggregation" [3]. The material in the next three paragraphs of this
introduction is summarized from [11 and [31 is discussed in greater detail
there.

The scenario that has been considered is that a salvo of n weapons is
launched against a target. The number of weapons that hit the target is a
random variable N with possible values 0, 1, ... , n. Possible damage to the
target is measured as a percentage (or proportion) of the whole ranging from
0% to 100%. The damage to a pristine target resulting from a single hit is a
deterministic proportion d of the whole. The aggregate proportion of
damage to the target from the salvo is a random variable D, che randomness
in D resulting from the randomness in the number of hits N.

The premise of the proportional effects mechanism for damage
aggregation has been that if the proportion of a pristine target that is damaged
by a single hit is d, then each additional hit damages the same proportion d of
that part of the target not previously damaged. Thus if D(k) is the aggregate
proportion of damage to a pristine target from exactly k hits, then

D(k) = 1-(1-d)k, k=0,...,n

as is shown in Section 3 of [1].

The objective has been to predict the expected proportion of damage E(D)
to the target resulting from the salvo. Since

E(D) = I D(k) P[N=k]
& =O

where P[N=k] is the probability of exactly k hits from the salvo, this
prediction involves modeling the probability distribution of the number of
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hits N. So far it has been assumed that each weapon in the salvo hits
independently with the same probability p, so that the number of hits N has
a binomial probability distribution. The impact of this assumption on E(D) is
discussed early in Section 4 of [1].

Effects mechanisms can be derived from assumptions about the

geometry of the target, the coverage of the weapon, and the probabilities of
hitting locations within the target area. Then the proportion of damage from

k hits becomes a random variable A(k), and with D(k) = E(A(k)}

E(D) - E{A(k))P[N=k] = D(k)P[N=k]
k=O k=0

Viewing the model at this deeper level of detail can provide a better picture of
its applicability.

One scenario for weapons overlap on a cellular target which leads to a
proportional effects mechanism, in the sense that

D(k) = E{A(k)} = I - (l-d), k = 0,... n

for a pertinent value of d, was presented in [3], and the probability

distributions for A(k) that it implied were examined. Probability
distributions for A(k) can be combined with probability distributions for N

to obtain deeper rooted probability distributions for D, the proportion of

damage to the target.

The purpose of this working paper is to explore a generalization of the
cellular target model of [3] which again leads to a proportional effects
mechanism. In this generalized model hits that impact some target cells do
not increase the proportion of damage to the target.

2. A cellular target with zero valued cells

Suppose that a cellular target is divided into m disjoint cells. Each cell
represents a portion of the target which would be affected by a single weapon
which impacts on that cell. The cells have different target values. There are
v cells with value 1/v and m -v cells with value 0. Thus the total target
value of all m cells is 1. The first weapon to impact a cell raises the
aggregate proportion of damage to the target by the value of the cell.
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Subsequent impacts on the cell do not raise the aggregate proportion of
damage to the target. If v = m, this target configuration reduces to the target
configuration considered in [3].
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have target value 1/26 and the m-v = 40 unshaded cells
have target value 0.

Now suppose, as in [3], that each hit irom the salvo impacts a randomly
chosen cell within the target independently of the cells impacted by the otherhits. Then if k hits impact j different cells with value l/z,, the proportion
of the target which is damaged is

A (k)-

If there are no hits (k = 0), then A(0) =0 and D(0) = E{A(0)} = 0. If
there is only one hit (k = 1), then the possibilities are illustrated by the

transition diagram below.

A(1) = 1/v

A(O)=O A(1)=0
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The arrows indicate transitions to the possible proportions of target damage

after one hit, with the probabilities that those transitions occur shown as

labels on the arrows. Then

D(1) = E{A(1)}-= 0 -v'+ 1 * v 1
m v m m

Thus

D(O) =1 - (1-d)° = 0

D(1) = 1-(1-d) 1 = d

for d = 1/r.

3. Transition diagrams and equations

The transition diagram for the aggregation of damage from one hit on

the target can be extended as shown below. If m = v, the diagram reduces to
the comparable diagram in Section 5 of [3]. The probability of an upward

transition from any total damage state A(k) = v/v = I is zero, so that all
upward transitions beyond total damage become impossible.

SA(3) =3/v Z ..

07-2)/m

-%(2) =21 - v /  A = 2/v .."'

( -U/ (T(A-N/rn//

Mil) = 1/v " (r- +l)/rn -a 2 = v / "( -v+ )/m (3) = l/v. .

A(O)-- - )-- -v)/ ) - (..-v)/r) 0

Ast 0 2n) = 0 hit 0) hi

Is! hit 2nd hit 3rd lilt..
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Multiplying the transition probabilities along paths leading to a
damage state and adding the products, it follows that

P[A(2)=01 = mn-v rn-v

P[A(2)=]= v rn-v+l + m-v v[=2n m n m rn

P[A(2) = 11 = v v-1

so that

D(2) = E(A(2)) = OP[A(2)=oI+lP[A(2)= ]+2P[A(2)=-ZI

1(v m-v+l+ m-V v)+-2( v-1)

2-mn-1 ( 1)2

Further

P[A(3)= ] =3

V in
P[A(3) =-I'

P[A(3):2 = (m-v)(v)(v-l)+(z)(m-v+l)(v_1)+(v)(vll(m-v+2)(i m 11m]L + -m1), -)+ L (m Z'

P[A(3) - )(7 1)(,,- 2)

Then

D(3) = E(A(3)1 = P[A(3) = ] + P[A(3) =] + 2- P[A(3) = - + I P[A(3)=

After some algebra, v drops out again and

D(3) = 3m 2 -3m+ l = 1 I-
m 3

The preceding computations of D(1), D(2), and D(3) indicate that the
damage aggregation mechanism for the target is proportional uitl:
d = 1/rn. It remains to confirm the proportionality of D(k) for an arbitrary k.
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The general transition diagram, going from k hits to k+1 hits,
appears below

AMVvM/ A(ki1) =

.5(k) (o-1/z' .5k+1)

.5(k) =j1 .5(k+I = j/v

AM(k = (-1/v A(k+') = j11

AM(k 2/v (m-v+2)/m b ~+ /

AM(k 1/ .(k.-1 = 1,1:

AM() 0 AN(k'1) -0

It follows that

P[A k +1)=O 0= MMZ'P[A(k) 01

and

P[A(k+1)<,I r-v Z'+ P[A(k)=l+. Z -+I1PIA(k)I1 1,.. 17
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Using the preceding k to k+1 transition equations

DRk+ 1) = E{A(k +1))}[~ 1) OPA(k +I 1) + PAk+1

j=O fri

=- Q m-VP[A(k)=-QI +Xj{MrV+j P[Ak=)+ vr ~l P[A(k)= !L'i}
v In v j=l T, i I

-X
m  ]P[A(k) 11 +~4 v iP[A(k) vIj

j=O J10

v f-~ ___Z-1Z'- __

- P[A(k) 'I Z v- rnA(k)~- -=l

j=O 0

- I 'PAk)n -, Z, + P[A(k) =T_ P[I)=E

j=0 j=0

M- ZF + _

+, +± dP[A(k)]
In Z, In v

j=O j=0

DRlE) Pk)} + = +1 + m-,- A

V In 7



The recursive relation

D\k+]) = m-lD(k)+1

which it turns out holds for k = 0, 1, ..., permits the verification of
proportionality, since if

D(k)=l-(1- 1)

then

D(k+1) = -

1~ ~ _Lkl+I

I /k+ 1

In)n

and we have already verified proportionality for k = 1, 2, and 3. This
completes the demonstration that the damage aggregation mechanism for the
target is proportional with d = 1/r.

6. Damage distributions

The k hits to k+1 hits transition equations

P[A(k + 1) = 0] = m- ' P[A(k) = 01

and

____V_+___ V j';+ 1 kP[A(k+ 1)= - -+p[A(k) = ]1+ -- P[A(k)= j j=l1, v

along with the initial condition P[A(0) = 01 = 1, provide a means for the

calculation of probability distributions for A(k), k = 1, 2, ... . As an example,

the numerical table which follows for A(k) when m = 20, v = 10, and u = 10,

was obtained by their recursive application.
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k 1 2 3 4 - 6 7 8 9 10
P[A(k) = 0] .5 .250 .125 .0625 .0312 .0156 .0078 .0039 .0020 .0010

P[A(k) = 1/10] .5 .525 .414 .2901 .1908 .1206 .0741 .0447 .0265 .0156

P[A(k) = 2/101 .225 .371 .4089 .3759 .3114 .2411 .1780 .1269 .0881
P[A(k) = 3/10] .090 .2070 .2981 .3441 .3482 .3228 .2810 .2334

P[A(k) = 4/10] .0315 .0945 .1705 .2398 .2897 .3158 .3194

P[A(k) = 5/10] .0095 .0354 .0777 .1302 .1846 .2332

P[A(k) = 6/10] .0024 .0108 .0280 .0550 .0901

P[A(k) = 7/101 .0005 .0026 .0078 .0176

P[A(k) = 8/10] .101 .0004 .0016
P[A(k) = 9/10 .0000 .0000

P[A(k) = 1] .0000

The algebraic structure of the probability distributions for the A(k)'s is

discussed in the appendix to this paper.

Appendix - Formulas for A(k) probabilities

The purpose of this appendix is to illustrate the algebraic structure of

the probability distributions for the A(k)'s (the proportions of damage

resulting from k hits to an ?n celled target with v cells of value 1/v and

m-v cells of value 0).

The followirg expressions for Pk[j] = Pk[A(k) = were obtained from

the k hits to k+1 hits transition equations derived in Section 3 along with

the initial condition P0 [0] = 1, using the software Theorist [4]. For this

purpose these equations are more conveniently written as

P k1[0I = u Pk[01

Pk+l~J] = u__ v-j+lp1 -] j~ .. vPIJ+ m i

where u = m-v, the number of "unvaluable" cells in the target.

9



Pilo0] = P1 [1] = z_,
m

P2 [o = 2 P2 M -u + 1)v P2 [2]- (v- 1)v
m 2  M 2  m 2

P3 [01 U
m 3

(3u 2 + 3u + 1)v 3(u + 1)(v - 1)v (v-2)(v - 1)v
m 3  m 3  n3

P4 [0] = u"71 4

P4 Il = (4u 3 + 6u 2 + 4u + 1)v
M 4

P [2] (61j2 + 12u + 7)(-' - 1)Z) P = (4u + 6)(v - 2)(z - 1)v
M 4 ?n 4

4 [41 = (v- 3)(v - 2)(v - 1)v

4 4

P5 [0] u
"1l 5

P5 [1 (5u 4+ lOu 3+ lOu 2+ 5u + l)v

m 5

P5 [21= 5(2u 3 + 6u 2 + 7u + 3)(v - 1)v

m 5

P [31 = (lOu 2 + 30u + 25)(v - 2)(v - 1)v

m 5

5 [41 = (5u + 10)(v - 3)(v - 2)(v - 1)v
m 5

5 [51 = (v - 4) (v- 3)(v - 2)(v - 1)v
m 5

10



Each Pk[j] has the structure

Pk[j] = Uk[j] vz(z- 1)(z- 2)...(v-j+l) v_
mk = Uj m1(v-j)!

where Uk[j] is a polynomial depending only on u, k, and j, a fact that can be

confirmed by inspecting the transition diagram at the beginning of Section 3.

It appears that the generation of the Pk[j]'s can be approached by

seperately computing the terms v(v-1)(v-2)...(v-j+l) and the coefficients
m

k

Uk[j ] using the modified version of the transition equations

Ukl[O] = Uk[O]

Ukj] = (u + j)Uk[j] + Uk[j-1]

with the initial condition uO] = 1. Whether this approach offers any

advantage over direct numerical application of the basic transition equations

is uncertain.

It should be noted that when all m cells are valuable so that u = 0, the

polynomials Uk[j] reduce to the coefficients Ck[jI considered in the

appendix to [3].

11
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A basic lemma on expected damage aggregation for cellular
targets, and some of its applications

1. Introduction

This working paper is the fifth in a series about modeling the
cumulative effect of weapons salvos directed against a target Its predecessors
are references [1] - [4].

One topic so far considered has been mechanisms for aggregating the
expected cumulative damage to a target as a function of the number of
weapons that hit the target. Papers [1] and [21 assume what we have come to
call a proportional damage aggregation mechanism as one of the foundations
for an investigation of certain approximate formulas for expected overall
damage from a salvo. Papers [3] and [4] are detailed looks at target
configuration and weapons impact scenarios that lead to the proportional
mechanism. The targets considered in [31 and [4] are cellular targets.

The purpose of the current paper is to present a basic lemma about
expected cumulative damage to a cellular target. The lemma permits a
simple demonstration of proportional damage aggregation in the targeting
scenarios considered in [3] and [4]. Amongst its other applications, the lemma
can be used to verify proportional damage aggregation for a wider range of
targeting scenarios.

The terms proportional and cellular used in this introduction will be
defined as they become pertinent in what follows.

2. Cellular targets with a finite number of cells

Assume that a target is divided into a finite number m of cells. It is
possible to visualize a cellular target as an area target as illustrated below.

Cellular Targets with m = 12 and m = 23 cells

Working Paper on Damage Aggregation
Naval Postgraduate School
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Another possibility is to visualize a cellular target as a collection of isolated
cells which might represent a formation of vehicles or aircraft, or a flight of
incoming missiles.

000 0

00 0 ° 0

0000 0
A cellular target with m = 13 cells

The essential assumption about cellular targets is that a weapon that
hits the target impacts on one or more of its cells. That is that the effect of the
weapon, be it complete or partial cell damage, is upon some subset of cells
selected by the weapon.

3. Cell target values

The target value of a cell represents the proportion of the target that is
damaged by damaging that cell. In [31 the m cells had equal target value 1/r.
In [4] v of the m cells had target value I/v. and the remaining m-v cells
had target value zero.

In general assume that the ith cell of a cellular target has a target value
w i , where w i O, i=1,...,m, and

li= 1

The proportion of damage to the target from k weapon hits is the total
target value of the cells that are damaged by the k hits. If C(k) is the set of
cells that are damaged as the result of k hits, and A(k) is the proportion of
the target that is damaged by k hits, then

A(k) = LiEckWi

14



Another way of relating A(k) to cell target values is through the use of
binary scoring variables

I if the th cell is damaged as a result of k

Xji~k - weapons hits on the target

0 if the 0 cell remains undamaged as

a result of k weapons hits on the target Mi m

Then

A(k)= wXi(k)

Cells are equally valued if

1
W 1I = Z'2  =..= m  = --n

that is, if each cell has the same target value. If cells are equally valued, then

A(k) = +X'i"kA M IMXi(k)

and the proportion of damage to the target from k hits is simply the ratio of
the number of cells damaged by k hits to the total number of cells.

4. Expected proportion of damage to a target

In the presence of random cell impact choices by weapons that hit a
cellular target, A(k) and X,(k), ... ,Xm(k) will be a random variables. Then
the expected proportion of damage to the target D(k) is

D(k) = E(A(k)) = E WX(k)J= M wjE{Xj(k)}

Since
E{Xi(k)} = I *P[Xi(k) = 11 + 0. P[Xi(k) = 0] = 3i(k)

where 3,(k) = P[Xi(k) = 11 is the probability that the ith cell is damaged by k
hits,

D(k) = X1i1j3i(k)

15



This simple relationship permits some interesting conclusions about damage
aggregation for cellular targets It is the basic lemma of the title of this paper.

5. When cells are equally favored

Cells are equally favored after k hits if

61(k) = 2(k) = ... = 3(k) 6(k)

that is, if each cell has the same probability of being damaged after k hits on

the target. Since 31(0) = 82(0) = ... = 6m(0) = 8(0) = 0, cells are always
equally favored after 0 hits.

If cells are equally favored after k hits, then

D(k) = 6(k) =--(k w = 8(k)

and the expected proportion of damage to the target from k hits is the same
as the common probability that a cell is damaged by k hits.

Cells are equally favored if cells are equally favored after k hits for
k = 0, 1, 2. Thus when cells are equally favored

D(k) = 5(k) k = 0, 1, 2,...

6. The proportional damage aggregation mechanism

The term proportional damage aggregation mechanism refers in this
context to a possible mode of growth for the expected proportion of damage
D(k) to a target as the result of an increasing number of hits k on the target.
This mechanism was discussed in [1] as a "plausible model" for damage
aggregation. Its derivation treats each D(k) as an abstract deterministic
proportion of damage to the target from k hits.

The premise of the proportional mechanism is that if the proportion of
a pristine target that is damaged by a single hit is d, then each additional hit
damages the same proportion d of that part of the target not previously
damaged.

16



Thus if D(k) is the aggregate proportion of damage to a pristine target
from exactly k hits, then

D(O) = 0 = -0-d)

D(1) = d = -(1-d)l

D(2) = D(1)+d{1-D(1)) = d+d(1-d) = 1-(1-d) 2

D(n) = D(n-1) + d{1 - D(n-1)} = 1 - (1-d) n -1 + d(1-d)n-1

1 1 - (1-d)(1-d) n - 1 = 1 - (1-d) n

where n is the number of weapons in the salvo.

7. Application to the targeting scenarios of [3] and [4]

In [3] and [4] a weapon that hits a target impacts on exactly one of its

cells. If the cell is previously undamaged, the weapon damages that cell.

Thus A() = - with probability one, where rn is the number of cells in the

target. and

D(1) = E{A(1)} = d = 1

Subsequent impacts on the cell do no further damage to the cell and do
not add to the damage to the target.

Also in [3] and [41 a weapon that hits a target makes a random choice of

which cell in the target to impact, with each cell being given an equal chance.

Weapons that hit the target choose their impact cells independently.

Under these assumptions the probability that a hit does not impact a

particular cell is 1 - -, and the probability that k hits do not impact a

particular cell is ( -)k, so that the probability that a particular celi is

17



impacted and damaged is 1- (1 - k . This means that cells are equally

favored with 3(k) = 1-1 J

It follows that

D(k) = (-1_)k k=1,2,

so that the damage aggregation mechanism is proportional with d = -,1
confirming a conclusion reached in both [31 and [4].

Note that the target values of cells do not enter into the preceding
argument.

8. The targeting scenario CA 1 UI

The elements of the targeting scenario CA11UI are:

(C) The target is cellular with m cells.

(A) Cell target values wi are arbitrary subject only to the general
constraints wi >0, i =1,..., m, and

2 .idjlZ i = 1

(1) Each weapon that hits the target impacts on exactly one of its
cells.

(1) One weapon impact on a cell damages the cell. Additional
impacts on the cell do not cause further damage.

(U) A weapon that hits the target impacts its cells uniformly in the
sense that each cell has the same probability 1/m of being
impacted.

(I) Weapons that hit the target choose the cells to impact
independently.

18



The targeting scenario of [3], CE11UI, where

(E) Cell target values are equal with each cell having value 1/m.

replaces (A) above, and the targeting scenario of [4], CZI1UI, where

(Z) Of the m cells, v have target value 1/v, and the remaining
m-v have target value zero.

replaces (A) above, are special cases of CAllUI. The discussion of these

scenarios in Section 7 applies more generally to show that in the CA11UI

targeting scenario damage aggregation is proportional with d = -L.

9. The targeting scenario C A r 1 U I

The elements of the targeting scenario CArlUI are:

(C) The target is cellular with ti celis.

(A) Cell target values w i are arbitrary subject only to the general

constraints wi > 0, i = 1, ... , m, andX m

.iMIlgi =I1

(r) Each weapon that hits the target impacts on a subset of r of its
cells.

(1) One impact on a cell damages the cell. Additional impacts on
the cell do not cause further damage.

(U) A weapon that hits the target impacts its cells uniformly in the

sense that each subset of r cells has the same probability I/ f 7

of being impacted.

(I) Weapons that hit the target choose subsets of cells to impact
independently.

19



The CArlUI scenario is suggestive of the effect of cluster warheads on
an area target.

In CArIUI

D(1) = E{A(1)} = d = r
m

The probability that a single hit on the target impacts a particular cell is

(1)(,- I (rn-i)
1 r-1 - (r-])!(m-r)! = r

r_ rr !(m-r)-

so that the probability that a single hit does not impact a particular cell is

1 g- The probability that k hits do not impact a particular cell is 1- ,

and the probability that a particular cell is impacted and damaged by k hits is

1- I _ . Thus the cells are equally favored with

k
3(k) = r k=o,1,2,...

It follows that

D(k) = - I-L k =O, 1,2,...

so that damage aggregation is proportional with d =

20



9. The targeting scenario C A 1 c UI

The elements of the targeting scenario CAlcU! are:

(C) The target is cellular with m cells.

(A) Cell target values wi are arbitrary subject only to the general
constraints wi 2! O, i = 1,..., m, andm

i=l Ui =

(1) Each weapon that hits the target impacts on exactly one of its
cells.

(c) c weapon impacts on a cell are required to damage the cell.
Additional impacts on the cell do not cause further damage.

(U) A weapon that hits the target impacts its cells uniformly in the
sense that each cell has the same probability 1/m of being
impacted.

(I) Weapons that hit the target choose the cells to impact
indcpcrnden tly.

In CAIcUI the probability that a single hit on the target impacts a
1

particular cell is -L. Out of k hits on the target, the probability that exactly j

impact the cell is

and the probability that there are at least c impacts on the cell is

2k 1,j

21



Thus cells are equally favored with

D(k) = 6(k) = Ljc,, 1- k = 0, 1,

This damage aggregation mechanism is not proportional, except in the special

case that c = 1, when

D(k) = : 1-M Lj jm

and the targeting scenario reduces to CAI T-
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Comparisons of an empirical rule for expected damage aggregation
from weapons salvos to models assuming a proportional damage
aggregation mechanism and dependent weapons hit distributions.

1. Introduction

This working paper is a revisit to an issue considered in [1].

The scenario considered here is that a salvo of n weapons is launched
against a target. The number of weapons that hit the target is a random
variable N with possible values 0, 1, ... , n. Possible damage to the target is
measured as a percentage (or proportion) of the whole ranging from 0% to
100%. The damage to a pristine target resulting from a single hit is a
deterministic proportion d of the whole. The aggregate proportion of
damage to the target from the salvo is a random variable D, the randomness
in D resulting from the randomness in the number of hits N.

The end objective is to predict the expected proportion of damage E(D)
to the target resulting from the salvo. This prediction can involve modeling
of the probability distribution of the number of hits N, and the way that
damage aggregates as additional hits beyond the first are scored.

An empirical rule for predicting E(D) is

f(D) = 1 - (l-d)E(N)

where E(N) is the expected number of hits on the target. This rule ducks the
issue of aggregating deterministic damage from multiple hits and to some
extent ducks the issue of modeling the probability distribution for the random
number of hits on the target.

In [1] this empirical rule was compared to the result of assuming that
each weapon in the salvo hits independently with the same probability p, so
that the number of hits N has a binomial probability distribution, and that
the deterministic damage aggregation resulting from multiple hits on the
target is proportional. The premise of the proportional mechanism for
damage aggregation is that if the proportion of a pristine target that is
damaged by a single hit is d, then each additional hit damages the same
proportion d of that part of the target not previously damaged. Thus if D(k)
is the aggregate proportion of damage to a pristine target from exactly k hits,
then

D(O) = 0 = 1 - (l-d)0

D() = d = I-(l-d

Working Paper on Damage Aggregation
Naval Postgraduate School

23 J. D. Esary November 1991



D(2) = D(1)+d{1-D(1)} = d+d(1-d) = 1-(1-d) 2

D(n) = D(n-1) + d{1 - D(n-1)} = 1 - (1-d)n-1 + d(1-d)n -1

= 1 - (1-d)(1-d) n 1 = 1 - (l-d) n

where n is the number of weapons in the salvo.

Here the empirical rule is compared to the result of assuming that
damage aggregation is proportional, and that the distribution of the number
of hits N on the target is arbitrary.

If P[N=k], k = o, 1, ... , n, are the probabilities of exactly k hits on the
target, then

n n

E(D) = D(k)P[N = k] = 1-(1-d)k1P[N k]
k=0 k=0

n n

I P[NiN=k] -_ (1-d)'P[N=k]
k=0 k=O

n

= 1 - (1-d)kP[N=k]
k=0

For the binomial hit distribution considered in [11, E(D) was shown to

overestimate E(D). In what follows E(D) will be found to overestimate

E(D) for any hit distribution, with certain special hit distributions considered

as examples.

2. The all-or-nothing hit distribution

Under the all-or-nothing hit distribution, either every weapon in the
salvo hits the target or none do. The hit distribution can be represented as

P[N=n] = p P[N=0] = 1-p 0O<p < 1
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Then

E(N) = O-P[N=O] + n-P[N=n] = 0-(1-p) + n-p = np

so that

Ef(D) = 1 - (1-dY'P
and

E(D) =D(O).PN=O] + D(n)*P[N=nI

0-O(1-p) + (I - (l-d)" *p

=p (1 - (I-d)n)

Plots [6] comparing E(D) to E(D) for selected values of n and p

follow. In each case E(D) ! E(D). A proof that E(D) is always greater than

E(D) is best left to the case of an arbitrary hit distribution.

f(D)~~ n2fD)
n 2 p =.4

p(D 2=

E(D)

E(D)

0d 0 d

E(D 
fd

25D)n



E(DD)
714

p = .2 
e

E(D)

0* 0-
0 d I 0 d

1(

p =. 6  
=.

0 d

p =26



3. The uniform hit distribution

Under the uniform hit distribution every possible number of hits on
the target, from no hits to all hits, is equally probable. The hit distribution is
represented by

P[N=k] - k + 1

Then
n n n

E(N) =>kP[N=k n+ -

k=O k=0 k=0

=1 n(n+1) _ n
n+1 2 2

so that

E(D) = 1-(l-d)2

and

n n
E(D) = 1(I- (1-d)k}P[N=kI = (1-d)

n+1
k=0 k=0

-1 X )k 1  I1 -(l-d)n+l1n+l-j n +l 1-(-- d)
k=O

1-0(1-d d)n+ 1

(n + 1)d

Plots [61 comparing Ef(D) to E(D) for selected values of n follow. In

each case E(D) >_ E(D). Again a proof that E(D) is always greater than

E(D) is best left to the case of an arbitrary hit distribution.
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d

E'(D)E(D)E(D)

6 l 
n

4. The r-certain hit distribution

Under the r-certain hit distribution, it is assured that from the n

weapons in the salvo exactly r will hit the target. The hit distribution is

P[N=r=l for some r 0<r~n

28



Then

E(N) = r -P[N=r] = rr

so that

E(D) = 1 _ QId)r
and

E(D) = D(r) -P[N=rI = D(r) 1 1 - (1-d/r

It appears that E( D) and E(D) depend only on the guaranteed

number of hits r, and not on the salvo size n. A plot [1 of E(D) E(D) for

selected values of r follows.

E(D) r=
=E(D)

d
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5. The initial and terminal values of E(D) and E(D)

n
E(D) = 1- (-d)E(N) and E(D) = E-X (1-d)kP[N=k] have the

k=O
same value at d = 0 for any hit distribution, since

E(D = 1(O) E( N )  1_1 = o

and

E(D)Id= = 1-E(1O)kP[N=k ] = 1-1 = 0
k=O

Both are consistent with the principle that if the proportion of the target
damaged by a single hit is zero, then the proportion of the target damaged by a
salvo should be zero.

On the other hand, the values of E(D) and E(D) at d = 1 are
different, since

E(Djd=I = 1-(1-1) E ( N ) = 1_0 = 1

and

E(DdI = 1-X(1-1)kp[N=k] = 1-P[N=0] = P[N>1l

k-O

The principle here is that if the target is totally damaged by a single hit, then
the expected proportion of the target damaged by a salvo should be zero if no
hit is scored or one if at least one hit is scored, i.e. O-P[N=0] + 1.P[N>I].
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6. The initial slope of E(D) and E(D)

Inspection of the plots associated with each of the three preceding hit

distributions suggests that E(D) and E(D), viewed as functions of d, have the

same derivative at d = 0. The following computations confirm this

observation in general and show that the shared initial slope of both

functions is equal to E(N), the expected number of hits on the target.

For E(D) = 1-(l-d)E(N),

-d (D) = - E(N) (1 - d)E(N) - (-1) = E(N) (1 - d)E(N) - 1
dd

so that

-d(D)l = E(N)
dd d=O

n0

For E(D) = 1- (1-d)P[N=k],

k=O

dk-
- E(D) k - ld)l(-l).-P[N k) Xk(-d)k~ P[N k]

k=O k=O

so that

d 
n

-EDAO= Vk PrN =k1 = E(N)
dd

k=O

31



7. A proof that E(D) is greater than or equal to E(D)

A general proof that E(D) 2! E(D) can be based on the inequality
between the arithmetic mean and the geometric mean of nonnegative
numbers

a, + a, + - - + an > ,a ..a

in its extended form

pla, + P2 a, + . + Pna a, aP, a2P2 ..ap"

where ak !0, 0 ! Pk 1, k = 1,.. n, and PI +P2+ Pn= 1. The proof applies
to an arbitrary hit distribution.

Since

E(D) = 1-1(1-d )k p[N =k
k=O

and

t(D) = 1 - (I -) 1- (1l-d)=O H (I- d)kPNk

k=u

then t(D) 2t E(D) if, and only if,

IX(I -d)k P[N =kI H 17 -I d) kP[Nk
k=O k=O

Letting Pk = P[N=kI, and ak = (1-d )k , k -0, .. ,n, the required inequality
becomes

nT n

Iak Pk 17 ak Pk
k=O k=O
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